
Submitting Jobs on NOTS with SLURM
Once you have an executable program and are ready to run it on the compute nodes, you create a job script that performs the followingmust
functions:

Use job batch options to request the resources that will be needed (i.e. number of processors, run time, etc.), and
Use commands to prepare for execution of the executable (i.e. cd to working directory, source shell environment files, copy input data to
a scratch location, copy needed output off of scratch location, clean up scratch files, etc).

After the job script has been constructed you must submit it to the job scheduler for execution. The remainder of this section will describe the
anatomy of a job script and how to submit and monitor jobs.

SLURM Batch Script Options

All jobs must be submitted via a SLURM batch script or invoking at the command line . See the table below for SLURM submissionsbatch
options.

Option Description

#SBATCH --job-name=YourJobName Recommended: Assigns a job name. The default is the name of
SLURM job script.

#SBATCH --partition=PartitionName Recommended: Specify the name of the Partition (queue) to use.
Use this to specify the default partition or a special partition i.e.
non-condo partiton with which you have access.

#SBATCH --ntasks=2 Required: The maximum number of tasks per job. Usually used for
MPI jobs.

#SBATCH --cpus-per-task=16 Recommended: The number processes per task. Usually used for
OpenMP or multi-threaded jobs.

#SBATCH --time=08:00:00 Required: The maximum run time needed for this job to run, in
days-hh:mm:ss.

#SBATCH --mem-per-cpu=1024M Recommended: The maximum amount of physical memory used by
any single process of the job ([M]ega|[G]iga|[T]era)Bytes.

 See our for more details. FAQ

#SBATCH --mail-user=YourEmailAddress Recommended: Email address for job status messages.

#SBATCH --mail-type=ALL Recommended: SLURM will notify the user via email when the job
reaches the following states BEGIN, END, FAIL or REQUEUE.

Please note script options are being provided using the long options and not the short options for readability and consistency e.g. --nod
 versus .es -N

Per Cluster restrictions
Warning per cluster restrictions may require you to customize the following generic instructions e.g. NOTS currently requires a
maximum of 1 node per job, but DAVinCI does not have such a restriction. Please refer to the introduction of each cluster for
requirements.

The value of mem-per-cpu multiplied by cpus on a node
(mem-per-cpu X ntasks X cpus-per-task) should not
exceed the amount of memory on a node.

https://docs.rice.edu/confluence/pages/viewpage.action?pageId=46897057

#SBATCH --nodes=1 --exclusive Optional: Using both of these options will give your job exclusive
access to a node such that no other jobs can share the node.
This combination of arguments will assign eight tasks to your job and
will give it exclusive access to all of the resources
(i.e. memory) of the entire node without interference from other jobs.
Please see our for more details on exclusive access.FAQ

#SBATCH --output=mypath Optional: The full path for the standard output (stdout) and standard
error (stderr) "slurm-%j.out" file, where the "%j" is replaced by the job
ID. Current working directory is the default.

#SBATCH --error=mypath Optional: The full path for the standard error (stderr) "slurm-%j.out"
files. Use this only when you want to separate (stderr) from (stdout).
Current working directory is the default.

#SBATCH --export=ALL Optional: Exports all environment variables to the job. See our FAQ
for details.

#SBATCH --account=AccountName

#SBATCH --partition=PartitionName

You need to specify the name of the condo account to use a condo
on the cluster.

Use the command to show whichsacctmgr show assoc user=netID
accounts and partitions with which you have access.

#SBATCH --constraint=<feature list> Optional: Constrains job to nodes matching a feature list. Currently
available features include processor architectures: ivybridge,

 and fabrics: . Features can be combined: broadwell, skylake opath --c
onstraint="skylake&opath"

#SBATCH --gres=gpu:1 Optional: Request a number of GPUs per node.

Serial Job Script

A job script may consist of SLURM directives, comments and executable statements. A SLURM directive provides a way of specifying job
attributes in addition to the command line options. For example, we could create a script this way:myjob.slurm

myjob.slurm

#!/bin/bash
#SBATCH --job-name=YourJobNameHere
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=1000m
#SBATCH --time=00:30:00
#SBATCH --mail-user=YourEmailAddressHere
#SBATCH --mail-type=ALL

srun myprogram

This example script will submit a job to the default partition using 1 task, 1GB of memory per processor core, with a maximum run time of 30
minutes.

Definition of --ntasks-per-node
For the clusters the --ntasks-per-node option means tasks per node.

Accurate run time value is strongly recommended
It is important to specify an accurate run time for your job in your SLURM submission script. Selecting eight hours for jobs that are
known to run for much less time may result in the job being delayed by the scheduler due to an overestimation of the time the job needs

https://docs.rice.edu/confluence/display/CD/How+To+Request+Exclusive+Access+To+A+Node+Via+SLURM
https://docs.rice.edu/confluence/display/CD/Inheriting+Environment+Variables+in+SLURM+Batch+Scripts

If you need to debug your program and want to run in interactive mode, the same request above could be constructed like this (via the commsrun
and):

srun --pty --ntasks=1 --mem-per-cpu=1000m --time=00:30:00 $SHELL

For more details on interactive jobs, please see our on this topic.FAQ

SLURM Environment Variables in Job Scripts

When you submit a job, it will inherit several environment variables that are automatically set by SLURM. These environment variables can be
useful in your job submission scripts as seen in the examples above. A summary of the most important variables are presented in the table below.

Variable Name Description

$SHARED_SCRATCH Location of shared scratch space. See our FAQ for more details.

$LOCAL_SCRATCH Location of local scratch space on each node.

$SLURM_JOB_NODELIST Environment variable containing a list of all nodes assigned to the
job.

$SLURM_SUBMIT_DIR Path from where the job was submitted.

Job Launchers (srun)

For all jobs run on the cluster we require that you use to launch your job. The job launcher's purpose is to spawn copies of your executablesrun
across the resources allocated to your job. By default only needs your executable, the rest of the information will be extracted from SLURM.srun

The following is an example of how to use inside your SLURM batch script. This example will run as a parallel MPI code onsrun myMPIprogram
all of the processors allocated to your job by SLURM:

myMPIjob.slurm

#!/bin/bash
#SBATCH --job-name=YourJobNameHere
#SBATCH --ntasks=16
#SBATCH --mem-per-cpu=1G
#SBATCH --time=00:30:00
#SBATCH --mail-user=YourEmailAddressHere
#SBATCH --mail-type=ALL

srun myMPIprogram

This example script will submit a job to the default partition using 16 processor cores per node, 1GB of memory per processor core, with a
maximum run time of 30 minutes.

to run.

How to specify mem
The -- value represents memory per process. If your value multiplied by the number of tasks (--)mem-per-cpu --mem-per-cpu ntasks
and cpus per task () exceeds the amount of memory per node, your job will not run. If your job is going to use the entire--cpus-per-task
node, then you should use the option instead of the or or options (). It is--exclusive --mem-per-cpu --ntasks --cpus-per-task See Here
good practice to specify the option if you are going to be using less than an entire node and thus sharing the node with--mem-per-cpu
other jobs.

https://docs.rice.edu/confluence/display/CD/Using+an+Interactive+Partition+via+SLURM
https://docs.rice.edu/confluence/display/CD/How+To+Request+Exclusive+Access+To+A+Node+Via+SLURM

The following example will run on only four processors even if your batch script requested more than four.myMPIprogram

srun -n 4 myMPIprogram

Submitting and Monitoring Jobs

Once your job script is ready, use to submit it as follows:sbatch

sbatch /path/to/myjob.slurm

This will return a jobID number while the output and error stream of the job will be saved to one file inside the directory where the job was
submitted, unless you specified otherwise.

The status of the job can be obtained using SLURM commands. See the table below for a list of commands:

Command Description

squeue Show a detailed list of all submitted jobs.

squeue -j jobID Show a detailed description of the job given by .jobID

squeue --start -j jobID Gives an estimate of the expected start time of the job given by .jobID

There are variations to these commands that can also be useful. They are described below:

Command Description

squeue -l Show a list of all running jobs.

squeue -u username Show a list of all jobs in queue owned by the user specified by userna
.me

scontrol show job jobID To get a verbose description of the job given by . The outputjobID
can be used as a template when you are attempting to modify a job.

There are many different states that a job can be after submission: BOOT_FAIL (BF), CANCELLED (CA), COMPLETED (CD), CONFIGURING
(CF), COMPLETING (CG), FAILED (F), NODE_FAIL (NF), PENDING (PD), PREEMPTED (PR), RUNNING (R), SUSPENDED (S), TIMEOUT

 or . The command with no arguments will list all jobs in their current state. The most common states are(TO), SPECIAL_EXIT (SE) squeue
described below.

Running (R): These are jobs that are running.

Pending (PD): These jobs are eligible to run but there is simply not enough resources to allocate to them at this time.

Deleting Jobs

A job can be deleted by using the command as follows:scancel

scancel jobID

Your Program must use MPI
The above example assumes that is a program designed to be parallel (using MPI). If your program has not beenmyMPIprogram
parallelized then running on more than one processor will not improve performance and will result in wasted processor time and could
result in multiple copies of your program being executed.

	Submitting Jobs on NOTS with SLURM

